A novel role for the fibrinogen Asn-Gly-Arg (NGR) motif in platelet function.
نویسندگان
چکیده
The integrin αIIbβ3 on resting platelets can bind to immobilised fibrinogen resulting in platelet spreading and activation but requires activation to bind to soluble fibrinogen. αIIbβ3 is known to interact with the general integrin-recognition motif RGD (arginine-glycine-aspartate) as well as the fibrinogen-specific γ-chain dodecapeptide; however, it is not known how fibrinogen binding triggers platelet activation. NGR (asparagine-glycine-arginine) is another integrin-recognition sequence present in fibrinogen and this study aims to determine if it plays a role in the interaction between fibrinogen and αIIbβ3. NGR-containing peptides inhibited resting platelet adhesion to fibrinogen with an IC50 of 175 µM but failed to inhibit the adhesion of activated platelets to fibrinogen (IC50> 500 µM). Resting platelet adhesion to mutant fibrinogens lacking the NGR sequences was reduced compared to normal fibrinogen under both static and shear conditions (200 s⁻¹). However, pre-activated platelets were able to fully spread on all types of fibrinogen. Thus, the NGR motif in fibrinogen is the site that is primarily responsible for the interaction with resting αIIbβ3 and is responsible for triggering platelet activation.
منابع مشابه
Succinimide Formation from an NGR-Containing Cyclic Peptide: Computational Evidence for Catalytic Roles of Phosphate Buffer and the Arginine Side Chain
The Asn-Gly-Arg (NGR) motif and its deamidation product isoAsp-Gly-Arg (isoDGR) have recently attracted considerable attention as tumor-targeting ligands. Because an NGR-containing peptide and the corresponding isoDGR-containing peptide target different receptors, the spontaneous NGR deamidation can be used in dual targeting strategies. It is well known that the Asn deamidation proceeds via a s...
متن کاملIsoaspartate-dependent molecular switches for integrin-ligand recognition.
Integrins are cell-adhesion receptors that mediate cell-extracellular-matrix (ECM) and cell-cell interactions by recognizing specific ligands. Recent studies have shown that the formation of isoaspartyl residues (isoAsp) in integrin ligands by asparagine deamidation or aspartate isomerization could represent a mechanism for the regulation of integrin-ligand recognition. This spontaneous post-tr...
متن کاملInhibition of platelet adhesion to fibronectin, fibrinogen, and von Willebrand factor substrates by a synthetic tetrapeptide derived from the cell-binding domain of fibronectin.
The role in platelet function of the cell-binding region of fibronectin was explored by the use of synthetic peptides. The prototypical peptide gly-arg-gly-asp-ser was capable of inhibiting thrombin-induced platelet aggregation without altering the degree of platelet activation as judged by the secretion of 14C-serotonin. The peptide also effectively inhibited, in a concentration-dependent mann...
متن کاملArginyl-glycyl-aspartic acid sequences and fibrinogen binding to platelets.
Human fibrinogen has an Arg-Gly-Asp-Ser (RGDS) sequence at residues 572-575 of its A alpha-chain. Although RGDS-containing peptides inhibit fibrinogen binding to stimulated platelets, these peptides also inhibit platelet binding of human fibrinogen fragment X and rat fibrinogen, which lack RGDS sequences corresponding to A alpha 572-575. Thus competition between free RGD-containing peptides and...
متن کاملA novel peptide motif for platelet fibrinogen receptor recognition.
To develop a specific antagonist of platelet alphaIIbbeta3 using small linear peptides, we synthesized a series of hexapeptides that did not have an Arg-Gly-Asp (RGD) sequence and examined their anti-platelet activity and their specificity for alphaIIbbeta3. We found a novel motif sequence, Pro-X1-X2-X3-Asp-X4, where X1 to X4 were all L-form alpha-amino acids, which specifically inhibited aggre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Thrombosis and haemostasis
دوره 113 2 شماره
صفحات -
تاریخ انتشار 2015